Investigation of nonlinear absorption processes with femtosecond light pulses in lithium niobate crystals.

نویسندگان

  • O Beyer
  • D Maxein
  • K Buse
  • B Sturman
  • H T Hsieh
  • D Psaltis
چکیده

The propagation of high-power femtosecond light pulses in lithium niobate crystals (LiNb O3 ) is investigated experimentally and theoretically in collinear pump-probe transmission experiments. It is found within a wide intensity range that a strong decrease of the pump transmission coefficient at wavelength 388 nm fully complies with the model of two-photon absorption; the corresponding nonlinear absorption coefficient is beta(p) approximately = 3.5 cm/GW. Furthermore, strong pump pulses induce a considerable absorption for the probe at 776 nm. The dependence of the probe transmission coefficient on the time delay Delta t between probe and pump pulses is characterized by a narrow dip (at Delta t approximately = 0) and a long (on the picosecond time scale) lasting plateau. The dip is due to direct two-photon transitions involving pump and probe photons; the corresponding nonlinear absorption coefficient is beta(r) approximately = 0.9 cm/GW. The plateau absorption is caused by the presence of pump-excited charge carriers; the effective absorption cross section at 776 nm is sigma(r) approximately = 8 x 10(-18) cm(2). The above nonlinear absorption parameters are not strongly polarization sensitive. No specific manifestations of the relaxation of hot carriers are found for a pulse duration of approximately = 0.24 ps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond time-resolved absorption processes in lithium niobate crystals.

Femtosecond pump pulses are strongly attenuated in lithium niobate owing to two-photon absorption; the relevant nonlinear coefficient beta(p) ranges from approximately 3.5 cm/GW for lambda(p) = 388 nm to approximately 0.1 cm/GW for 514 nm. In collinear pump-probe experiments the probe transmission at the double pump wavelength 2lambda(p) = 776 nm is controlled by two different processes: A dire...

متن کامل

Ultrabroadband few-cycle infrared pulse generation from a noncollinear optical parametric amplifier based on bulk niobate crystals

We describe a near-IR two-stage noncollinear optical parametric amplifier (NOPA) pumped at 800 nm that employs bulk congruent lithium niobate [LiNbO3 (c-LNB)] and bulk potassium niobate [KNbO3 (KNB)] crystals. Noncollinear phase matching in these materials allows for generation of pulses as broad as 2900 cm−1 (∼78 THz) centered in the near-IR at ∼1300 nm. In the particular geometry described he...

متن کامل

Femtosecond holography in lithium niobate crystals.

Spatial gratings are recorded holographically by two femtosecond pump pulses at 388 nm in lithium niobate (LiNbO3) crystals and read out by a Bragg-matched, temporally delayed probe pulse at 776 nm. We claim, to our knowledge, the first holographic pump-probe experiments with subpicosecond temporal resolution for LiNbO3. An instantaneous grating that is due mostly to the Kerr effect as well as ...

متن کامل

Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing

Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configur...

متن کامل

Spectral phase correlation of coded femtosecond pulses by second-harmonic generation in thick nonlinear crystals.

We demonstrate a novel all-optical scheme for measuring the correlation of spectrally phase-coded ultrashort optical waveforms that uses second-harmonic generation (SHG) in long, periodically poled lithium niobate crystals. The SHG yield can be controlled over a range of ~30 dB, depending on the correlation of the applied phase codes. Such a spectral phase correlator has applications for ultras...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 71 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005